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The titled tetraselenanaphthalene derivative (BEDO-TSeN)
has been synthesized using the reaction of 1,4-dioxene-2,3-dise-
lenolate with tetraiodo- or tetrabromoethylene. The structure of
this tetraselenanaphthalene derivative was confirmed by X-ray
analysis. The �-donor property of this molecule was determined
by CV analysis.

There has been considerable current interest in tetrathia-
naphthalene 1, because of its ability to act as an electron donor
in pairs of the charge transfer complexes,1 and because of its iso-
merization to tetrathiafulvalene by chemical or electrochemical
oxidation1c or under basic conditions.2 Although tetraselena-
naphthalene 2 and tetratelluranaphthalene 3 can be constructed
by changing the chalcogen from sulfur to selenium and tellurium
atoms, a cyclopenta-fused derivative of 3 was the sole known
counterpart.3 Thus, 2 and its derivative were hitherto unknown
compounds.

In the course of our study on �-donors fused by a 1,4-diox-
ene ring,4 we investigated the synthesis of the title compound
(BEDO-TSeN 4) containing two fused 1,4-dioxene rings. Since
the ethylenedioxy unit in a �-donor system is known to play a
role by increasing either the donor property (inductive and meso-
meric effects) or the stacking ability (CH���O hydrogen bond),
TTFs and oligothiophenes having ethylenedioxy substituents
have been employed for designing highly conducting materi-
als.5,6
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Before starting the synthesis of 4, we planned to establish a
new route to access the 2,3-dialkylseleno-1,4-dioxene system.
As shown in Scheme 1, the reaction of 2,3-dibromodioxene 57

with tBuLi (2 equiv.) at �78 �C, followed by treatment with se-
lenium powder (1 equiv.) at �20 �C produced the monoseleno-
late 6, which was reacted again with tBuLi (2 equiv.) at
�100 �C, followed by treatment with Se powder (1 equiv.) at
�50 �C to room temperature to form the diselenolate 7. The re-
action of 7 with MeI (excess) at �78 �C to room temperature af-
forded 2,3-dimethylseleno-1,4-dioxene 8 in 80% yield.8 In a
similar manner, the reaction of 7 with CH2I2 (1.2 equiv.) at
�78 �C to room temperature for 3 days led to 9 in 22% yield.
Since the reaction of 7 with thiophosgene (1.1 equiv.) produced
109 in 45% yield, the low yield of 9 may be due to low CH2I2
reactivity. Taking into account the reactivity of 7 with alkyl hal-
ides, the reactions of 7 with tetrahalogenoethenes were carried
out. The reaction of 7 with tetrachloroethene yielded no identi-
fied product, but a similar reaction of 7 with tetrabromoethene

afforded a trace amount of the desired 4. Furthermore, treatment
of 7 with tetraiodoethene resulted in the formation of 4 in 2%
yield. Interestingly, the reaction of 7 with tetrabromoethene
(0.4 equiv.) in the presence of LiCl (2 equiv.) produced 4 in
15% yield, although LiCl was not effective for the reactions of
7 with tetrachloro- and tetraiodoethylenes. It was reported that
the reaction of dilithium 1,2-cyclopenteneditellurolate with tet-
rahalogenoethene in the presence of LiCl led to the production
of a tetratellurafulvalene derivative.10 However, a similar reac-
tion of 7 with tetrahalogenoethene resulted in the formation of
4 selectively. The effect of LiCl might be explained by the en-
hanced reactivity of the monomeric 7 through the dissociation
of aggregated species.

Recently, the synthesis and X-ray structural determination
of bis(ethylenedioxy)tetraselenafulvalene (BEDO-TSeF) was
reported.11 Since BEDO-TSeF is a structural isomer of 4, we
confirmed the formation of 4 by X-ray analysis12 and compared
the structure with its sulfur and tellurium counterparts 1 and 3.
As shown in Figure 1a, 4 locates on a crystallographic center
of symmetry, and the central Se2C=CSe2 unit is exactly planar.
The neighboring OSeC=CSeO unit is also planar, and the max-
imum atomic deviation from the least-squares plane is 0.03 �A.
However, the two 1,4-diselenin rings have a boat form, and
the molecular structure of 4 adopts a non-planar, zigzag confor-
mation. The dihedral angle between the Se2C=CSe2 and
OSeC=CSeO units is 53� (Figure 1b). This structure is similar
to those of 1 (dihedral angle, 49.7�)1d and 3 (dihedral angle of
cyclopenta-fused derivative, 57.1�).3a The bond distances in
the central 1,4,5,8-tetraselenanaphthalene and the outside 1,4-
dioxene rings of 4 are normal. The molecule 4 stacks along
the a-axis, and there are four intermolecular Se���Se contacts
[Se(1)���Se(2) 3.6841(8) �A, Se(1)���Se(2)� 3.7598(7) �A, and
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Scheme 1. Synthesis of 4 and 8–10 via 7.
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Se(2)���Se(2)� 3.7583(8) �A], which are much shorter than the
Se���Se van der Waals distance (4.00 �A) (Figure 1c).

As expected from the calculated HOMO level (�7:56 eV,
HF/6-31G�), 4 exhibits oxidation potentials corresponding to
the formation of its cation radical and dication. Thus, 4 shows
two irreversible oxidation waves (Epa

1 ¼ 0:62 and Epa
2 ¼ 0:95

V vs Fc/Fcþ) in the cyclic voltammetric analysis (Figure 2).
The oxidation potentials are comparable to 1 and the cyclopen-
ta-fused derivative of 3 but seem to be higher than those of 1,4-
dithiins,13 presumably due to the non-planar, zigzag structure of
4 as shown in Figure 1b.

Polyacenes and their hetero-analogues have recently re-
ceived considerable attention,14 because of their potential utility
as organic field-effect transistor (OFET) materials. Studies on
the properties and applications of tetraselenanaphthalenes are
now under investigation.
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Figure 1. Crystal structure of 4. (a) Top view. (b) Side view. (c)
Crystal packing. Dotted lines indicate the three Se���Se short con-
tacts (i, 3.6841(8), ii, 3.7598(7), and iii, 3.7583(8) �A). The Se-
lected bond lengths ( �A) and angles (�) are as follows: Se(1)–
C(1) 1.901(4), Se(1)–C(3) 1.893(4), Se(2)–C(1)� 1.916(4),
Se(2)–C(2) 1.902(4), O(1)–C(2) 1.373(5), O(2)–C(3) 1.380(5),
C(1)–C(1)� 1.323(8), C(1)–Se(1)–C3 97.2(2), C(1)�–Se(2)–
C(2) 98.1(2), Se(1)–C(1)–Se(2)� 113.7(2), Se(1)–C(1)–C(1)�

124.4(4).

1.0 0.5 (V vs. Fc/Fc+)

i

Figure 2. Cyclic voltammogram of 4 (0.1M Bu4NClO4, PhCN,
Pt working and counter electrodes, Ag/Agþ reference electrode,
50mV�s�1, rt). The potentials were measured against an Ag/
Agþ electrode and converted to the values vs Fc/Fcþ.
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